The Enframing of the Self as a Problem: Heidegger and Marcel on Modern Technology’s Relation to the Person

Zachary Willcutt, Boston College

http://wp.me/p1Bfg0-3qj
Discourse today often includes phrases such as “my neurons made me do it,” or “my brain does this or that.” Popular opinion increasingly maintains that the mind is identical to the brain. That is, social consciousness views the person as nothing more than a collection of chemicals and cells, resulting in the phenomenon, or perhaps the epiphenomenon, of consciousness, which has nothing incorporeal or interior about it. It is, following the pattern of the things in the world, supposed to be another physical thing. The contemporary collective consciousness knows that the human being is just another wholly material object, subjected to the same laws of causal determination as plants, atoms, and stars.

Following Heidegger, such social knowledge is shown to be the product of the present scientific and technological understanding of the self, subsuming consciousness, thought, emotions, passions, and choices as objects of empirical, scientific study, which uses various instruments to purportedly show that the person is her brain, converting the self into what Marcel calls a problem; however, this conflicts with the traditional perspective that the human is an immaterial soul. To defend the latter position, this article will deconstruct the claims of modern neuroscience to prevent the de-humanization of individuals that as the result of these claims now occurs.¹

Enframing the Person as Brain

This understanding of the human person is consequent upon modern science, in particular neuroscience and psychology, which depend wholly on modern technology. There is thus a mutual relation between technology and science, leading to a process of the en-framing of the person as the brain. Martin Heidegger in *The Question Concerning Technology* sets forth the particulars of this process. He notes that there is a social awareness that modern technology “is based on modern physics as an exact science” (*QCT*, 14). In general, individuals are aware that their computers, cars, electricity, and other modern items, depend on scientific activity. Technology requires as its condition the development of scientific knowledge, in particular physics, without which microwaves and electricity would not be possible. However, just as technology depends on science, science depends on technology, since “modern physics, as experimental, is dependent upon technical apparatus and upon progress in the building of apparatus” (*QCT*, 14). The work of scientists in general is rooted in technology, which provides cyclotrons, electron tunneling microscopes, and spaceships that further scientific cognition.

Thus, the relation between science and technology is reciprocal; neither can exist without the other. Such reciprocity is becoming more clearly understood (*QCT*, 14). Modern technology and modern science mandate one another, one aiding the other, while each stands on the ground set forth by the other. In the context of mind-brain identity debates, this involves public awareness through social cognition of viewing the mind and person as nothing more than the brain, which is commonly held to be scientific knowledge, as dependent on modern neuroscience in the reductionist sense that seeks to state that the mind is an illusion; it is true that there are neuroscientists who reject reductionism, and they are not those against whom this essay is articulated, insofar as they recognize the independence of the mind from the brain.

¹ This is neuroscience in the reductionist sense that seeks to state that the mind is an illusion; it is true that there are neuroscientists who reject reductionism, and they are not those against whom this essay is articulated, insofar as they recognize the independence of the mind from the brain.
technology such as brain scans. Without technology, contemporary neuroscience and cognitive science could never have developed. These fields require technology, which serves as their condition and has thus led to the furthering of mind-brain identity theories as social cognition.

The public predominance of such theories was described by Heidegger, in what he calls *Gestell*, usually translated into English as enframing, “the challenging claim which gathers man thither to order the self-revealing as standing-reserve” (*QCT*, 19). Standing-reserve occurs when “[e]verywhere everything is ordered to stand by, to be immediately at hand, indeed to stand there just so that it may be on call for a further ordering” (*QCT*, 17). The things of the world, and humans subsumed as part of the world, are arranged solely with respect to their use insofar as they may be employed for continued utilization. Entities and, more importantly, persons are reduced to their mere possibility of being used for some end. That persons have become standing-reserve is demonstrated by “the current talk about human resources” (*QCT*, 18). Individuals are integrated as parts into the whole of the technological systems dominating life, where individuals have value only insofar as they can be incorporated into the technological whole. Thus, enframing indicates the gathering and ordering of persons and things so that they are revealed as available for use.

In this context, Kisiel interprets enframing as ‘synthetic compositioning,’ indicating “artificiality to the system of positions and posits” (Kisiel 2014, 138). This translation for *Gestell* fully encompasses the meaning that Heidegger is trying to indicate, that the world and persons are brought together to be used for further instrumentality. That is, *Gestell* signifies the functionalization of persons and things into the disposability of the standing-reserve, which is ordering for the end of more ordering, with no end beyond that of such ordering. All that is, is reduced to its functionality. To synthetically compose the person as an instrument, he must be understood in terms of his instrumentality, his submission and application to technology, for he has become “a commodity to be stored, shipped, handled, delivered, and disposed of” (Bambach 2015, 10). In this state, humans “become the functionaries of technological positioning, we put ourselves in position to be stockpiled and surveyed” (*Ibid*). Technological-functionalization de-humanizes the person, whose individuality disappears within the system.

In this way, the person is a mere component of a machine, a machine that in the framework of mind-brain identity debates turns the self into a brain. Humans are synthetically composited as brains, destroying their uniqueness as persons, as they have become only material. The self is eclipsed by the impersonality of matter (cf. Scalabrino, 2015). Having no characteristics particular to a person, the brain belongs to no one, and vanishes into the nothingness of pure matter. For every brain is equally exchangeable as any other brain. As it has been established, technology requires modern science; thus, humans become objects of science in social consciousness, that they too might be ordered according to the orders of the ordering. This ordering, itself in its essence technological, necessitates that the person is considered as nothing more than his brain. For if he was not just a brain, he would have some aspect that escaped instrumentality; having been reduced to the order of instrumentality, he must therefore only be thought of in his physicality. Human beings are
problematized as objects of natural scientific study, the socially common view among many scientists and much of western society today.

However, that the mind is identical to, or emerging from, the brain, despite the apparent scientific support for this conclusion, should be confronted with great scrutiny. For historically, most philosophers, religions, and cultures, have maintained a soul or spirit as the ground of personality, rather than mere matter. That such a view was so widely held dictates that it should be considered seriously.

On Reducing the Human Person

Augustine’s remarks in the narrative of *Confessions* that his mother Monica brought him “to birth, both in her flesh, so that [he] was born into this temporal light, and in her heart, so that [he] might be born into eternal light” (*C* 9.8.17). Here, Augustine has distinguished between the flesh and the heart, exteriority and interiority, that is, matter and spirit, respectively. For Monica gave birth to him in body, but also by her prayers for his soul gave birth to him in her heart as well. Her heart is in no way physical, being contrasted with the flesh; it is spiritual, which indicates it is not composed of anything material. The affective center of emotions of the human person is of the soul, indicating that the fundamental being of the self cannot be located in the material order.

During the Medieval period, Bonaventure with respect to the journey toward God that “[w]e must also enter into our soul, which is God’s image, everlasting, spiritual, and within us” (*Journey of the Soul into God*, 60). The soul, the self, is clearly considered as spiritual and interior, preventing it from being observed as if it were a material object. Humans are spiritual rather than physical beings. To be spiritual means that one thinks, desires, loves, cares, intends, and feels emotions and affects such as anger or joy.

Though not involving himself explicitly in the *Critique of Pure Reason* in debates on the nature of the person, Kant makes clear that the self is not physical. For “although all our cognition commences with experience, yet it does not on that account all arise from experience” (*CPR* B1). Experience is merely the stimulus for knowledge, rather than the ground; Kant observes that aspects of cognition do not find their source in the experience of the empirical world. Thus, there must be a transcendental, *a priori* root of knowledge, which indicates the person is not restricted to a mere body.

Now turning to the *Mystery of Being*, Marcel argues that modernity has reduced the human person to a problem as opposed to a mystery. A problem is that which “I find complete before me, but which I can therefore lay siege to and reduce … A genuine problem is subject to an appropriate technique by the exercise of which it is defined” (*MB*, 211). Problems are objective, and can be answered by a definite, adequate formula that will yield the requisite result. The human mind is capable of grasping problems as a whole, so that all aspects become visible, enabling the problem to be analyzed into its components. This is the process of the natural sciences. But when what is not genuinely a problem is considered as
such, the result is a broken world. The latter consists in the reduction of personal identity to a “few sheets of an official dossier,” which is how “I am forced to grasp myself” (MB, 29).

Persons are compelled to understand themselves as mere instruments in the system set forth by the utilization of technology, where technocrats use science to justify their policies. As such, the human must be reduced to the brain, for if he has a mind, he would be thus not wholly subservient to the synthetic compositioning. To subject a person to technology mandates that he consider himself nothing more than a collection of neurons. Social consciousness leads individuals to submit to the control of those who produce scientific knowledge that furthers ordering society through technology under the reign of science. However, “there is within the human…something that protests against the sort of rape or violation of which he is the victim; and this torn, protesting state of the human creature is enough to justify us in asserting that the world in which we live is a broken world” (MB, 33).

The realm of technology destroys love, emotion, and care. The person is losing himself to his functionalization, in which he is a functionalized self that operates according to the deterministic laws of science; questions about his being are to be answered by examining as if he were merely another object in the world, a tree, planet, or mineral. He dwells, or more accurately fails to dwell, “in a mechanized world, a world deprived of passion” (MB 24). Through rigorous scientific analysis, all that is valuable in the person is detected and employed. The world of humanity is converted into a set of functionalized selves in a techno-scientific system that has as its purpose only its own furtherance; the world is broken, life is extinguished.

By the interposition of a cybernetic or the techno-scientific self-understanding, such as the mind-brain identity thesis into social consciousness, “the will is re-directed toward a virtual dimension” (Scalambrino 2015, 5). Taken radically, moving beyond the dangers of virtual reality, Scalambrino is pointing to the general threat posed by the technologically-conditioned reduction of the person to the brain. When humans believe that they are nothing more than piles of chemicals, their wills are oriented toward the possibilities appropriate to a pile of chemicals. They live for, and deliberate in terms of, a pile of chemicals, rather than for themselves qua persons. For them, to be is to be a brain, with no meaning or purpose greater than that of a toad, snake, or some animal with a brain.

However, as daily experience testifies, as persons, individuals have a feeling of their being-beyond-the-world. The person is not his body, requiring a different approach, that of mystery. In this way, Marcel understands the person as mysterious, being that which “transcends every conceivable technique,” and “is itself like a river, which flows into the Eternal, as into a sea” (MB, 211, 219). A mystery is infinite; it is a vast depth that cannot be sounded. There is no method to a mystery, it cannot be represented or known as such, for it exceeds the capacity of the mind to represent it (MB, 69). An individual can only move about, may only live, in the mystery, a reservoir of inexhaustible richness. Unlike the problem, the mystery draws the person out of himself, and he is himself a mystery, as exemplified by characteristics of his own being. Marcel notes that “the act of thought itself must be acknowledged a mystery; for it is the function of thought to show that any objective
representation, abstract schema, or symbolical process, is inadequate” (MB, 69). Thus, humans shatter the boundaries of the physical, even in their thinking, and so cannot be reduced to the brain.²

The Libet Experiment

Among the most famous experiments reducing the mind to the brain by free will being interpreted out of existence, the Libet experiment, as interpreted by Benjamin Libet himself, purports to show that human behavior can be accurately predicted by brain events prior to such behavior actually occurring. Specifically, this test asked persons who were watching a dot moving along a circle to flick their wrists when they “freely wanted to do so” (Libet 2002, 553).³ After doing this, they reported W, “the clock-time associated with the first awareness of the wish [or urge] to move” (Libet 2002, 553). 550 msec before muscle movement an increase in readiness potential (RP) began. For Libet, “an appearance of conscious will 550 msec…before the act seemed intuitively unlikely” (Libet 2002, 553). Two types of tests were performed on the subjects, who in one such type had two sets of results. In one test, subjects were asked to spontaneously move, in which case they would at times report a “general intention…to act within the next second or so,” or have no such planning, while in the other test type, subjects responded to a randomly given stimulus, of which time they were not aware (Libet 2002, 554).

With respect to when the subject freely acted without planning, there was a buildup of RP, which has been termed RP II, and when the subject acted with prior intention, there also was a buildup of RP, identified as RP I. In the trial with the stimulus, there was no buildup of RP. With prior intention, RP I accumulated 1000 msec before muscle movement, while in the absence of pre-planning, RP II built up 550 msec prior to muscle movement, and 350 msec prior to the wish to act, which itself was 200 msec before the act (Libet 2002, 557). As the result of the buildup of RP, in particular RP II, Libet states that the “volitional process is…initiated unconsciously” (Libet 2002, 551).

A superior perspective on of the Libet experiment rather indicates that the brain is subsequent to the mind, such that mental states precede brain states, which is the case for several reasons. Firstly, every instance of build-up of RP in the brain and the wrist movement of the body was correlated in some way with the mental state of the desire to move. Readiness-potential and wrist movement only occurred in relation to the desire to move, indicating an intrinsic relation between conscious willing and physical, both brain and kinesthetic, action. The build-up of RP always was temporally determined by its relation to the desire to move, so that brain states correspond to mental states. Given that hands can only be moved by the person through commands sent from the brain, hands being corporeal, some sort of modification of the brain would be required to move the hand. That this modification exists is not perplexing, and provides nothing against free will.

² This first requires the deconstruction of the functionalized and de-humanized self to restore the mystery about the person.
³ Libet, “Do We Have Free Will?”
RP I, the RP observed with respect to previous intention, only had a significant increase with the time of initial planning given by subjects, who were aiming to move around a second before muscle movement. The significant increase in RP occurred at the same time plans were reported to be developing, at 1000 msec, indicating that the muscles were being primed for motion by the intentions of the subject. With respect to RP II, that the increase in RP was 350 msec before the urge to move is not an indicator of the absence of free volition. For, as both a methodological and substantive issue with the Libet experiment is the definition of the conscious urge to move, which carries a variety of significations, especially in the word ‘urge,’ Libet also conflated urge with will or active wish to move. This indicates that a person is contemplating whether she has an urge to move, a process that could lead to a build-up of RP in the brain. She is deliberating whether she has such an urge at this particular instant. For an individual may have an urge to do something, urge understood as the feeling of desire, and yet hesitate to act on that desire. The decision to act on a desire is distinct from the presence of this desire. What the Libet experiment shows most clearly is that humans can feel impulses, upon which they then decide to act. Often, a person eats when his stomach feels empty, an emptiness that can be registered by monitoring the brain. But to say that that person is determined by such emptiness is absurd, as demonstrated by those who are gluttons or go on hunger strikes. Further, the self might not be hungry at all and yet still indulge in food. Such is the result of the delay between RP II and W.

As the result of his lack of philosophical comprehension, Libet could not distinguish between the wish to move and the urge or impulse to move. If urge is understood as ‘wish,’ the appearance of such wish is arbitrary, a decision of the will; the mind contemplates enacting this will, and wishing to accomplish such a deed. The determination of this wish, only after which one would be conscious of the wish to wish this activity, would of course result in some type of brain activity in order to prepare the body. But this brain activity occurs as the result of the spiritual deliberation requisite for determination of will. Thus, the buildup of RP may either indicate that the person is determining his will with respect to the sensation of physical need or impulse, or merely anticipating the becoming of his wish, expecting that he will soon in the future wish this. That is, in order to move at an instant, the body must be primed, causing a buildup of RP, which on this count is not an argument against free will. For apart from the instant of conscious wish itself, a person is, even without pre-planning, still in a certain sense mentally planning his action. For as one must make the arbitrary choice of suddenly flicking his wrist, an action that he knows he will soon perform, his body is able to respond to the consciousness of the impending deliberate mental choice to flick the wrist by being primed in what is observed as readiness potential.

Analyzing Soon and Libet’s Work

Another scientific experiment conducted by Soon et al., tested the ability to predict the decisions of the subject before the decisions were consciously made, by having a person press a button with either their left or right index finger when they felt the urge to do so (Soon et al. 2008, 543). The researchers claimed to have been predicted subject choices 10 seconds prior to such choices; however, that the accuracy of predictions was a mere sixty-percent should also lead to hesitation in leaping to the conclusion that this experiment is
evidence against free will. Sixty-percent is a mere ten-percent more than the result of guessing at every other instance whether a person would move. A random game of probability would provide results not significantly different from those of the Soon experiment. Thus, that the experimenters were successful in sixty-percent of cases is only evidence that they are but half-way decent at guessing games.

In nearly half of all instances, Soon was unable to predict physical movement on the basis of the build-up of readiness-potential. In nearly half of all instances, brain states gave no evidence for future movement. In nearly half of all instances, brain states at the scientific, technological, empirical level, examining among the most basic physical functions of the human person, were unable to yield a causal account of behavior. To say that brain states caused the movement, that they caused the mental urge, is wholly unwarranted. Causality is necessary and universal, yet here it is neither, the buildup of readiness-potential not necessary for the conscious wish to move and in no interpretation always universally present prior to mental states. No causal link whatsoever has been demonstrated by Soon.

Both Libet and Soon have made the paradigmatic example of an argument from ignorance; they say that because they can see no other potential cause for the actions performed by their subjects, then the brain is the source for those actions; unknown brain events, they say, are the source for human actions. But they cannot point to these brain events; for none such exist that are the causes of action. As they have committed themselves to materialism, they cannot think in terms of a spiritual cause that alters matter. Yet such spiritual cause, readily experienced as the conscious choice of a mind, is the obvious genesis of action and behavior.

This impossibility in observing even the simplest of motor functions, among the most basic thoughts or commands that a person can issue, implies that more complex choices are impossible to study. Since the command to issue motor controls has a genesis outside of the brain, all other more complex mental activities must similarly find their ground beyond a mere physical organ.

As previously noted, readiness-potential always is related to conscious deliberation, anticipation, and choice; the former is in the brain, while the latter three are mental events. Qna mental events, they are subjective, and never in themselves come under the observation of technological instruments. They are interior, not exterior, contrasting with brain events, which are observable. That brain events follow mental events seems to be shown by the Libet experiment, as no readiness-potential occurs without mental events being reported by the subject. The suggestion, then, is that brain events, such as the build-up of readiness-potential, are causally dependent on mental states, as there is in fact both a necessary and universal connection.

If anything, the Libet experiment indicates, as the result of the difference between mental and brain events, that mental and brain events cannot be correlated, which is simply further evidence for the traditional theory that interiority precedes exteriority; the spiritual precedes the corporeal. More evidence for this is available from one of the most well-documented
medical occurrences, the Placebo Effect and its lesser-known twin, the Nocebo Effect. These in particular show that mental states are in no way reducible or causally contingent on brain states, yet that brain states depend on mental states.

The placebo and nocebo effects “are treatment effects, unrelated to the treatment mechanism, which are induced by patients’ expectations of improvement or worsening respectively” (Bartels et al. 2014, 1). That is, the placebo and nocebo effects are fundamentally cognitive, determined by the expectations of individuals. These expectations are mental, not physical, and wholly subjective; yet, despite their subjectivity and existence in the mind rather than the brain, they have an established effect on the outcomes of treatments. Thus, mental states have a direct causal role on the physical world. The mind influences the brain.

For the brain, through which pain is felt, does not know that the person is taking a drug that is not active to reduce an illness, while the mind does know that the individual is using this drug, causing the placebo or nocebo effect, as the result of anticipation of success, or the absence thereof. Were there not a mind independent of the brain, the placebo and nocebo effects could never happen, since intentionality is not characteristic of the brain, yet only the conscious mind. All intentional states are mental, which must therefore be assigned real existence as the result of its causal power. Knowledge and expectation exist in the subject, the mind alone. The brain does not think, and no brain has ever thought.

On the Status of Mental States

All contemporary neuroscience rests on a fundamental assumption, which is that mental states do not exist; they are mere figments of the brain, which, qua matter, is reality. All that is, is corporeal matter, and consciousness is an illusion. Thus, to study the person, the scientist should study the physical world. The subjective states of the individual are ultimately nothing, and should not be trusted in determining the scientific view of the self. Modern science, with its emphasis on the empirical and observable, as a methodological consideration, must use this assumption, for were it to not, it would be compelled to admit that there exists that which is beyond its capacity to know.

Yet this assumption, that all is matter and mental states are an illusion, terminates in a *reductio ad absurdum*. For beginning with the proposition that mental states are an illusion, let this be applied to mental states regarding external objects, physical objects. For instance, take the physical object Saturn; Saturn is known *qua* physical object. It is seen, a process that according to neuroscience occurs by various neurons crashing together in the brain. Thus, Saturn only exists on the basis of its existing in the brain, because we only know of Saturn by the seeing in the brain, which by analogy holds true for all physical objects, including brains. The physical does not need to exist outside of the mind; it could very well be a mere construct of the brain.

The fact that Saturn is seen by multiple persons is irrelevant; for this only means that persons opine that they share the seeing of the same Saturn. The possibility still exists that
each individual sees a different Saturn, where humans are stimulated with the sensation of the *apparently* same object. The physical world is known only through mental states; thus, the physical world is an illusion. If neuroscientists want to say that emotions are not real merely because they occur in the brain, they must likewise say that Saturn is not real, as it too exists in only the brain. All that is, whether mental or physical, becomes an illusion, including the brain itself, as brains are only known by technological observation of them. Brains are known by brains. But Saturn does exist apart from the brain; therefore, mental states also have real existence not reducible to the brain.

All subjective mental states must consequently be given actual reality, and must be considered to have the same level of reality as is had by the corporeal world. This necessitates with the force of law that the brain not be hypothesized as the source of mental activity. Any attempt to reduce mental states to brain states results in the absurdity of the whole of existence, including the spatial, becoming an illusion, for matter only exists as a representation to the conscious subject.

Following from these problems associated with the synthetic compositioning of the self as the brain, the person is not reducible, even by modern technology, thereto. Humans should not be taken as objects of technological and scientific study, yet rather in accord with their own unique way of being that respects their unique status as humans. Man must not be reduced to a material brain by instrumentality, but rather acknowledged as the center of the world of his own first-person subjectivity. The reductionism of neuroscience must be overcome to keep humanity human. Marcel in *Creative Fidelity* reflects this task of rejecting de-humanization, to “strengthen the fierce resolution of those who reject the consummation by themselves or others of man’s denial of man, or…the denial of the more than human by the less than human” (*CF*, 10).

Contact details: willcuttz@bc.edu

References

